The role of cellular senescence in ageing of the placenta

Lynne S. Cox a, *, Christopher Redman b

a Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
b Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital Oxford, UK, OX3 9DU, UK

ARTICLE INFO

Article history:
Received 6 July 2016
Received in revised form 6 January 2017
Accepted 10 January 2017

Keywords:
Placenta
Senescence
Syncytiotrophoblast
Decidua
Inflammation
IUGR
Pre-eclampsia
Stillbirth
Senescence-associated secretory phenotype (SASP)
Aging

ABSTRACT

Aberrant placental ageing is implicated in a high percentage of birth complications, stillbirths and neonatal deaths. Understanding how this complex organ is established and maintained for the 9–10 months of pregnancy and then how and why it undergoes the physiological changes that result in labour at term is therefore of enormous clinical importance. In this review, we assess the evidence that placental ageing results from cellular senescence, a state of terminal proliferation arrest accompanied by characteristic morphological and metabolic changes including a shift to a pro-inflammatory phenotype. We discuss how senescence both contributes to placental formation during cytotrophoblast fusion, and to the changes necessary for labour onset, such as cervical remodelling and increased sterile inflammatory signalling. Based on evidence from human clinical studies and experimental interventions in mice, we assess possible biochemical pathways that may drive senescence, and speculate on how aberrant senescence in the placenta may contribute to pre-eclampsia, pre-term birth and stillbirth.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. The burden of placental pathologies

Placental pathology causes major pregnancy disorders, partially encompassed in the concept of the Great Placental Syndromes [1]. The original concept was limited to disorders of deep placentation and included preeclampsia, fetal growth restriction without preeclampsia, preterm labour, preterm premature rupture of membranes, late spontaneous abortion, and abruptio placenta. However most cases of preeclampsia are of late onset where placentation is not an issue [2] although the disorder is also secondary to placental pathology. While gestational diabetes is not part of this group because the placental pathology is secondary to the maternal condition, not its cause, it imposes stresses on the placenta.

The global burden of these conditions is heavy. Pre-eclampsia alone accounts for one sixth of direct maternal deaths, about 60,000 per annum [3]. About 15 million babies are born preterm each year and the rate appears to be increasing [4]. About three quarters are spontaneous and the rest induced largely because of preeclampsia [5]. There are 2.6 million stillbirths/year [6]. Even those that previously would have been considered to be unexplained are increasingly found to be associated with important placental pathology.

Understanding the underlying placental pathology of these conditions is therefore key in developing strategies to limit or prevent them. One issue that is re-emerging is the importance of post-term gestation which not only is implicated in elevated rates of stillbirth but associated with increased preeclampsia rates [2]. In this context placental ageing may be a key component in determining the outcome of pregnancy. In this review we assess the current state of understanding of the role of cellular senescence in the placenta, including how senescence may normally contribute both to placental formation and the normal onset of labour, and how aberrant senescence can lead either to PTB or to post-term stillbirth. We further consider how treatments targeting
senescence within the placenta may lead to novel therapeutic strategies for intrauterine growth restriction and preeclampsia.

1.2. Features of cell senescence

Cellular senescence is a state of essentially irreversible cell cycle arrest resulting from high levels of the cyclin kinase inhibitors p21\(^{CDKN1}\) and/or p16\(^{INK4A/6/CDKN2}\) as well as tumour suppressors p53 and/or pRb (retinoblastoma tumour suppressor protein) (reviewed in Ref. [7]). Senescent cells are generally larger than proliferating cells of the same lineage, and show a flattened morphology with marked actin stress fibres [8]. Increased mTORC1 kinase activity in senescent cells promotes protein synthesis through activation of ribosomal biogenesis [9] and relief of translational inhibition [10], though without the expected downstream response of cellular proliferation normally observed on mTORC activation in the non-senescent state. Autophagy inhibition by active mTORC signalling [11] results in accumulation of cellular debris that can be visualised by light microscopy as granular cytoplasmic inclusions in JunQ bodies close to the nucleus of senescent cells [12]; lipid droplets are also often seen (Fig. 1). A widely used biomarker of senescence is high lysosomal activity characterised by pH-sensitive senescence-associated beta galactosidase (SA-\(\beta\)-gal, [13]), which identifies senescent cells in vitro and in vivo. Senescent cells can be mono- or multi-nucleate, and often show enlarged nuclei with aberrant distribution of heterochromatin and prominent nucleoli. Lamin B loss is commonly observed [14], and chronic DNA damage is thought to persist, since senescent cells stain strongly for \(\gamma\)H2AX, a marker of unrepaired DNA double strand breaks (reviewed in Ref. [15]).

As well as their characteristic morphology, senescent cells markedly change gene expression patterns, with upregulation of anti-apoptotic Bcl-2 leading to resistance to apoptosis [16]. In parallel, high NFkB activity results in the expression of proinflammatory cytokines and chemokines which contribute to the senescence-associated secretory phenotype, or SASP [17]. The composition of the SASP varies according to cell line [18], but generally includes canonical markers IL-6 and TNF-\(\alpha\); secretion of metalloproteases such as MMP3 and MMP9 is also common. Very recent studies in primary oral fibroblasts demonstrated that upregulation of COX2 and PGE2 may trigger SASP production [19]. The SASP may also be responsible for induction of ‘bystander senescence’ in surrounding cells [20].

1.3. Acute senescence is important in development and wound healing

Cellular senescence can arise in response both to physiological and pathological stimuli (Table 1). Developmental senescence has been described as a physiological process important for tissue remodelling in the early embryo; cells staining positive for senescence markers p21\(^{CDKN1}\) and SA-\(\beta\)-gal can be detected at limb buds and in developing organ structures in mice [21,22], and it is thought that the secreted SASP factors recruit NK cells for immunological clearance of senescent cells [23] that is necessary for remodelling. In the axolotl, senescence is critical for limb regeneration after amputation [24], suggesting a role in acute wound healing. Senescent cells also play an important though complex role in mammalian wound healing, promoting fibrosis in the lung but preventing liver fibrosis (reviewed in Ref. [25]).

In addition to wound healing, senescence is thought to be a potent tumour suppressor mechanism that halts proliferation of cells with acute oncogene activation, and permits immunological removal of these potentially neoplastic cells [26]. This type of senescence is known as oncogene-induced senescence (OIS). Similarly, high levels of DNA damage, converging on p53, p21 and p16, can lead to cell cycle arrest that then proceeds into senescence (reviewed in Ref. [25]).

1.4. Senescence contributes to ageing

Acute senescence is therefore beneficial to multicellular organisms, either in development, wound healing or in preventing hyperplasia of cells with genomic damage or activated oncogenes. However, replicative exhaustion from telomere shortening [27], and/or chronic macromolecular damage, such as persistent DNA lesions, lipid peroxidation, and protein carbonylation that accumulate over long periods of time can result in sustained triggering of the senescence pathway and accumulation of senescent cells with organisinal age [25]. Such accumulation leads to loss of tissue repair capacity accompanied by a damaging state of chronic inflammation that is thought to contribute to frailty and many of the diseases associated with old age, including cardiovascular disease, cancer and dementia [23]. Indeed, senescent cells can be

Fig. 1. Morphology of senescent cells. (A) Proliferating human skin fibroblasts in culture, with characteristic spindle morphology. (B) Cells from the same population, grown in culture until they have undergone ~90 population doublings and reached replicative senescence. Note the massive increase in cell area, prominent nucleoli, multiple nuclei in some cells, uneven cell margins, and granular inclusions in the juxta-nuclear Q bodies (JunQ) as well as lipid droplets.
identified post-mortem at sites of hemodynamic stress, such as arterial junctions (especially in aortic aneurysms [28]). They have recently been implicated in neurodegeneration with age [29], including in Alzheimer’s and Parkinson’s disease [30,31]. Inhibition of mTORC1 using rapamycin leads to lifespan extension in mice [32], and improves cognitive function in both AD and PD mouse models [33,34]; rapamycin acts at least in part by suppressing the mTOR pathway [32], and improves cognitive function in both AD and PD mouse models [35]. It potentially because excess superoxide dismutase (encoded on chromosome 21) prevents the build up of ROS that would otherwise direct cytotrophoblast differentiation towards fusion and STB formation [46].

The STB shows features characteristic of senescent cells including the biomarker SA-β-gal, together with high expression of the cyclin kinases inhibitors p16 and p21, and p53 [40]. These prevent cell cycle progression and cell division, which could be disastrous for a syncytium of this size and complexity. Within the syncytiotrophoblast, newly recruited nuclei show some residual DNA synthesis; older syncytial nuclei (present in syncytial knots) lack DNA synthesis [47] but instead show chromatin rearrangement to form heterochromatic foci reminiscent of SAHFs found in replicative senescence and oncogene-induced senescence (OIS) [48]. Consistent with its other senescent phenotypes, the STB also secretes immunomodulatory and tissue remodelling factors including matrix metalloproteases [49]. The key features of the senescent STB are shown schematically in Fig. 2. As well as trophoblast senescence on STB formation, it has also been reported that natural killer cells are induced to undergo senescence in response to soluble HA-G secreted by trophoblasts, and that this promotes remodelling of the maternal spiral arteries in early pregnancy [50].

Apart from its barrier and transfer functions the STB is also a major source of newly synthesised proteins and lipid. For example, pregnancy maintenance requires production of hCG by the STB [51]. To achieve a high level of protein synthesis, extensive ribosome biogenesis is required together with enhanced rates of translation,

Table 1

Causes and consequences of senescence.

<table>
<thead>
<tr>
<th>Trigger</th>
<th>Developmental senescence (DS)</th>
<th>Wound healing</th>
<th>Oncogene induced senescence (OIS)</th>
<th>Stress-induced premature senescence (SPS)</th>
<th>Replicative senescence (RS)</th>
<th>Fusion-induced senescence (FIS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular pathways</td>
<td>Development?</td>
<td>Wounding</td>
<td>Oncogene activation</td>
<td>DNA damage or other cellular stress (e.g. ROS, ER stress)</td>
<td>Telomere attrition</td>
<td>Cell fusion</td>
</tr>
<tr>
<td>p21 (CDKN1A)</td>
<td>?</td>
<td>?</td>
<td>p16INK/ARF; p53</td>
<td>DDR (ATM/R etc) signalling to p53; ER stress through eIF2 and mTOR pathway</td>
<td>DDR (ATM/R etc) signalling to p53</td>
<td>Viral fusogens</td>
</tr>
<tr>
<td>Timing</td>
<td>Early embryogenesis</td>
<td>Throughout life</td>
<td>Throughout life; accumulation with chronological age</td>
<td>Throughout life; accumulation with chronological age</td>
<td>Throughout life; accumulation with chronological age</td>
<td>Physiological: Placental formation (syncytiotrophoblast) Pathological: On viral infection</td>
</tr>
<tr>
<td>Immunological clearance</td>
<td>Yes</td>
<td>Yes</td>
<td>Possibly</td>
<td>Acute or chronic</td>
<td>Acute or chronic</td>
<td>Yes — leading to tissue and organ dysfunction an organismal frailty</td>
</tr>
<tr>
<td>Accumulation of senescent cells?</td>
<td>No</td>
<td>No</td>
<td>Possibly</td>
<td>Chronically</td>
<td>No?</td>
<td>Yes, as a large syncytiotrophoblast</td>
</tr>
<tr>
<td>Impact of inhibiting senescence chromatin organisation</td>
<td>Failure of tissue remodelling</td>
<td>Fibrosis; failure of wound resolution; failure of limb regeneration in amphibia</td>
<td>Tumorigenesis?</td>
<td>Improved longevity and health outcomes in older animals?</td>
<td>Senescence-associated heterochromatic foci (SAHF)</td>
<td>Failure of mammalian pregnancy</td>
</tr>
<tr>
<td>SASP</td>
<td>Yes</td>
<td>?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes, no though possibly some DNA damage in syncytial knots</td>
</tr>
<tr>
<td>DNA damage</td>
<td>No</td>
<td>?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

2. Formation of the syncytiotrophoblast may induce senescence

Cell fusion, an essential physiological process to establish and expand the syncytiotrophoblast (STB), has recently been recognised to be a further trigger of cell senescence (40), see also Table 1. Senescence as a response to fusion may have evolved to halt the proliferation of cells infected with fusogenic viruses (e.g. the measles virus) so it is of note that cytotrophoblast fusion requires a retroviral fusogen hERVWE1 (also known as syncytin 1 in humans and syncytin A in mice), that is now encoded within the measles virus) so it is of note that cytotrophoblast fusion requires a retroviral fusogen hERVWE1 (also known as syncytin 1 in humans and syncytin A in mice), that is now encoded within the

Note: The text is a concise summary of the research findings and does not include all the references provided in the original document. The abstracted content focuses on the key points related to senescence and its implications in the context of pregnancy and the placenta.
accomplished through elevated mTORC1 signalling. Notably, elevated mTORC1 signalling without proliferation is also a key feature of other modes of senescence.

Hence STB senescence is a normal physiological phenomenon. As would be expected, it progresses as pregnancy advances, that is with placentation ageing. The evidence that this occurs is more complete in animal than in human pregnancies (summarised in Ref. [52]). There is increasing evidence that pathology when physiological senescence is accelerated leads to placentation and clinical pathology. There are two groups of outcomes. First, if ageing affects the STB, its transfer functions may be compromised leading to fetal growth restriction, with or without pre-eclampsia. Secondly, if ageing affects the chorioamnion it may promote labour, either normally or prematurely.

3. Placental pathology and senescence

Poor placentation predisposes to early-onset pre-eclampsia, which is strongly associated with IUGR, or can cause normotensive IUGR, with similar placentation pathology. Both are associated with a burden of underlying placentation oxidative and endoplasmic reticulum stress [52,53], which are known to accelerate cellular senescence, and may therefore contribute to the clinical features of these major placentation syndromes. Increased placentation or trophoblast senescence has been demonstrated in preeclampsia or normotensive IUGR, in terms of telomere shortening, aggregation or other measures of telomere dysfunction [54–57]. Overall, there is a definite trend of decreasing placental telomere length with IUGR [58], suggesting that telomere-attrition dependent senescence in decidual cells may contribute to early onset of labour (see Fig. 3). The frequency of SAHF correlates with IUGR [56] and increases on exposure to senescence-inducing agents such as ROS [59]. By analysing the patterns of differential DNA methylation in the placenta it is possible to estimate its chronological age (normal placentas) or detect accelerated aging. In this way, accelerated ageing has been found in placentas associated with early but not late onset pre-eclampsia [60].

Microarray analysis of human placentas of various gestational ages has demonstrated that expression of other markers of senescence, particularly p21, p53, APE1 and IL-6, is increased in placental syndromes including PE and IUGR [61], while short telomeres in trophoblasts are associated with placental syndromes such as PE [57]. Proteomics comparisons show upregulation of senescence factors (e.g. annexins) in PE placentas compared with those from normal pregnancies [62,63], again highlighting the link between senescence and placental syndromes.

3.1. Late gestation stillbirth and the ageing placenta

It is possible that ageing of the placenta also plays a role in late gestation stillbirth. After 40 weeks of gestation, the death rate for fetuses rises [64]. Some deaths may be associated with overt or occult IUGR [65]. A recent study of unexplained stillbirths reveals placental senescence in terms of significantly shortened telomeres [66]. It is likely that post-term, fetal demands for oxygen and nutrients outstrip the placenta’s ability to supply, and that an inherent build-up of ROS can lead to deterioration of the placenta including marked senescence [67].

3.2. Senescence of the decidua and amniochorion, in relation to labour

Fetal tissues comprise only a part of the placenta, as the decidua is formed from differentiated maternal stromal fibroblasts that have undergone decidualisation. Such cells are responsible for the secretion of an extracellular matrix rich in fibronectin and laminin, but they also promote enhanced vascular permeability. As pregnancy comes to term, decidual cells show many features of senescence including secretion of SASP factors such as IL-6. As with STB
senescence, decidual senescence is associated with increased mTORC1 signalling, with preterm birth associating with elevated mTOR in mice and humans [68] (see Fig. 3). Recent analysis of senescence markers in membranes from term labours shows a clear upregulation of factors associated with senescence together with the proinflammatory SASP [69,70]. A gradual process of decidual senescence may be critical for driving the cellular and tissue changes that contribute to labour onset at term. If ageing of the placenta normally determines pregnancy duration, then the natural corollary is that premature placental ageing will lead to pre-term labour onset, as has recently been reviewed in detail [71]. It has been argued that increasing release of cell-free placental DNA as part of a senescence-associated stress reaction may trigger preterm labour [72]. Part of the cell-free placental DNA may include telomere fragments, which, with released HMGB1, could act as DAMPs (damage-associated molecular patterns) to promote sterile inflammation contributing to the onset of labour [71].

Transgenic mice with uterine p53 deletion show accelerated decidual senescence, with elevated p21, IL-8 and various CXCL cytokines that together contribute to the SASP [73]. This deletion correlates with preterm birth, which can be rescued by additional deletion of the p21 gene [73], strongly supporting the hypothesis that p21-dependent senescence causes PTB.

As telomere attrition is a known driver of replicative and DNA-damage induced senescence, many studies of placental pathology have analysed telomere length. Of particular note are trisomy 21 pregnancies, where short placental telomeres and early decidual senescence correlate with intrauterine growth restriction [74]. There is as yet no definitive association between telomere length and other specific pathologies, perhaps because damage at only one telomere can trigger senescence while most assays measure global telomere length across cell populations e.g. in clinical biopsies.

3.3. Senescence as a potential inducer of labour

As the pregnancy comes to term, elevated sterile inflammatory signals (the SASP) secreted from both the senescent maternal decidua and fetal membranes are likely to contribute to onset of labour. In particular, elevation of prostaglandins PGF2 and PGE2 acting through the COX2 pathway are thought to be important in signalling labour onset [75]; this in turn may depend on which cells are producing the SASP. There are marked differences between cell types as to what factors are secreted in the SASP and, for example, MMPs secreted by the STB in the first trimester may be necessary for trophoblast penetration during the lacunar stage of very early placentation, while those produced by the decidua (and probably the fetal membranes) in late stage pregnancy may contribute to cervical remodelling in preparation for labour. Non-physiological causes of senescence such as ROS resulting from maternal smoking, exposure to environmental pollutants, or general poor perfusion (e.g. from failure to fully remodel spiral arteries) are likely to trigger stress-induced senescence earlier than the normal programme of senescence; it is notable that

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Positive and negative effects of senescence on pregnancy.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decidua</td>
<td>Syncytiotrophoblast</td>
</tr>
<tr>
<td>Origin</td>
<td>maternal</td>
</tr>
<tr>
<td>Senescence caused by</td>
<td>p53 deletion</td>
</tr>
<tr>
<td></td>
<td>↑ROS (PE, smoking, pollution)</td>
</tr>
<tr>
<td></td>
<td>Telomere attrition</td>
</tr>
<tr>
<td>p21 induction</td>
<td>Trisomy 21 (T21)</td>
</tr>
<tr>
<td></td>
<td>p53-independent</td>
</tr>
<tr>
<td>Impact of senescence</td>
<td>Detrimental (stress)</td>
</tr>
<tr>
<td></td>
<td>• Loss of function</td>
</tr>
<tr>
<td></td>
<td>• Inflammatory cytokines</td>
</tr>
<tr>
<td></td>
<td>• Pre-term birth</td>
</tr>
<tr>
<td>Inhibition of senescence</td>
<td>Beneficial</td>
</tr>
<tr>
<td></td>
<td>(rapamycin prevents PTB)</td>
</tr>
</tbody>
</table>

Placental senescence raises several important questions that need to be addressed experimentally. While fusion-induced senescence appears to be required for syncytiotrophoblast formation, it is likely that senescence of both fetal tissues and the maternal decidua play at least a part in determining timing of labour onset (Table 2). In terms of the SASP, some factors may be beneficial and some detrimental to maintaining pregnancy, and it may depend on which cells are producing the SASP. There are marked differences between cell types as to what factors are secreted in the SASP. For example MMPs secreted by the STB in the first trimester may be necessary for trophoblast penetration during the lacunar stage of very early placentation, while those produced by the decidua (and probably the fetal membranes) in late stage pregnancy may contribute to cervical remodelling in preparation for labour. Non-physiological causes of senescence such as ROS resulting from maternal smoking, exposure to environmental pollutants, or general poor perfusion (e.g. from failure to fully remodel spiral arteries) are likely to trigger stress-induced senescence earlier than the normal programme of senescence; it is notable that
these factors are all linked, and are associated with pre-term birth. However, that determines the rate of accumulation of senescent cells and expression of SASP factors in uncomplicated pregnancies is as yet unknown.

Ageing is one of the highest risk factors known for most adult human diseases, such as cancer, diabetes, and metabolic syndrome [86]. It would seem that placental ageing is likewise a high risk factor for a variety of conditions that affect the placenta at the end of its short life span. This perception offers opportunities for rethinking preventive strategies and understanding between constitutional and environmental factors that adversely affect pregnancy outcome.

Author agreement

We certify that both authors have seen and approved the final version of the manuscript being submitted. We warrant that the article is our original work, has not received prior publication and is not under consideration for publication elsewhere.

Conflict of interest statement

The authors declare no conflict of interest.

Acknowledgements

LSC is grateful to the Glenn Foundation for Medical Research for an award for Research in Biological Mechanisms of Aging, and to the BBSRC [grant number [BB/M006727/1]]. This review is based on ideas first presented at the 2015 Global Pregnancy Eclampsia Cooperation (CoLab) conference in Oxford, England. The Global Pregnancy Collaboration is part of the Pre-eclampsia-Eclampsia Monitoring, Prevention & Treatment (PRE-EMPT) initiative funded by the University of British Columbia, a grantee of the Bill & Melinda Gates Foundation.

References

